KN Algebra Derived from Virasoro Algebra with Vertex Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie triple derivation algebra of Virasoro-like algebra

Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.

متن کامل

The Virasoro vertex algebra and factorization algebras on Riemann surfaces

2 Virasoro as a local Lie algebra on C 3 2.1 Dolbeault resolution of holomorphic vector fields . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Lie algebra extensions and the cocycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 A cocycle for LC . . . . . ....

متن کامل

Exceptional Vertex Operator Algebras and the Virasoro Algebra

We consider exceptional vertex operator algebras for which particular Casimir vectors constructed from the primary vectors of lowest conformal weight are Virasoro descendants of the vacuum. We discuss constraints on these theories that follow from an analysis of appropriate genus zero and genus one two point correlation functions. We find explicit differential equations for the partition functi...

متن کامل

lie triple derivation algebra of virasoro-like algebra

let $mathfrak{l}$ be the virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. we investigate the structure of the lie triplederivation algebra of $mathfrak{l}$ and $mathfrak{g}$. we provethat they are both isomorphic to $mathfrak{l}$, which provides twoexamples of invariance under triple derivation.

متن کامل

The Virasoro algebra

0 −→ c −→ g1 φ1 −→g −→ 0 such that c ⊆ Z(g1), the center of g̃. A morphism of central extensions is a Lie algebra homomorphism ψ : g1 → g2 such that φ2ψ = φ1. A universal central extension is a central extension g̃ such that there is a unique morphism from g̃ to every other central extension of g. The Schur multiplier is the kernel of the universal central extension of g. It classifies the project...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress of Theoretical Physics

سال: 1989

ISSN: 0033-068X,1347-4081

DOI: 10.1143/ptp.82.162